A Low Power Low Voltage Rail to Rail Constant gm Differential Amplifier with 150 dB CMRR and Enhanced Frequency Performance

نویسندگان

  • Leila Safari
  • Seyed Javad Azhari
چکیده

This paper proposes a low voltage (±0.55V supply voltage) low power (44.65μW) high common mode rejection ratio (CMRR) differential amplifier (d.a.) with rail to rail input common mode range (ICMR), constant transconductance (gm) and enhanced frequency performance. Its high performance is obtained using a simple negative averaging method so that it cancels out the common mode input signals at the same input terminals while preserving high frequency operation. The principle of operation, small signal analysis and the formula of its most important parameters are explained and derived. Simulation results with HSPICE using TSMC 0.18μm CMOS are presented showing rail to rail operation, CMRR of 150dB, voltage gain of 31.6dB, gain bandwidth of 95.8 MHz and input referred noise of 100.64nv/√Hz. Compared to conventional amplifier ones those are 94.4dB , 3.4dB, 1.62 times and 1.72 times better, respectively. The CMRR corner case simulation results are also provided showing from 52.1dB to 74.6dB improvement over conventional one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Low Power Low Voltage Rail to Rail Constant gm Differential Amplifier with 150 dB CMRR and Enhanced Frequency Performance

This paper proposes a low voltage (±0.55V supply voltage) low power (44.65µW) high common mode rejection ratio (CMRR) differential amplifier (d.a.) with rail to rail input common mode range (ICMR), constant transconductance (gm) and enhanced frequency performance. Its high performance is obtained using a simple negative averaging method so that it cancels out the common mode input signals at th...

متن کامل

To Design a Cascode LNA by Using Channel-Length-Split Device with Constant-gm in a 0.35 μm Silicon CMOS Technology

Abstract: In the paper, the folded-cascode low-noise operational amplifier (LNA) with constant-gm is proposed and analyzed. The channel-length split technique adopted to expand ratio of W/L of the differential pair transistor to improve the performance of LNA for the gain bandwidth product, noise and offset voltage. The channel-length split method is separated differential input transistor into...

متن کامل

An Ultra High CMRR Low Voltage Low Power Fully Differential Current Operational Amplifier (COA)

this paper presents a novel fully differential (FD) ultra high common mode rejection ratio (CMRR) current operational amplifier (COA) with very low input impedance. Its FD structure that attenuates common mode signals over all stages grants ultra high CMRR and power supply rejection ratio (PSRR) that makes it suitable for mixed mode and accurate applications. Its performance is verified by HSPI...

متن کامل

1.5 V Rail-to-Rail Constant Gm CMOS Differential Amplifier

In this paper is presented a novel constant transconductance CMOS differential amplifier. The circuit uses a modified CMOS inverter to process polarisation currents of the complementary differential amplifier in order to maintain constant transconductance over the entire common-mode input voltage range. Simulation shows error less than ±6.12 % for a single supply voltage of 1.5 V. Key-Words: lo...

متن کامل

Constant- Rail-to-Rail CMOS Op-Amp Input Stage with Overlapped Transition Regions

Conventional techniques to achieve a constant-gm rail-to-rail complementary N-P differential input stage require complex additional circuitry. In addition, the frequency response and common-mode rejection ratio (CMRR) are degraded. An economical but efficient design technique to overcome these problems is proposed. The proposed technique strategically overlaps the transition regions of the tail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012